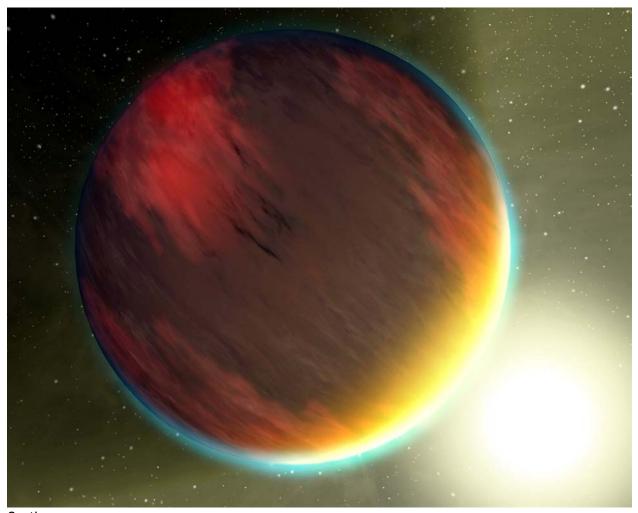
The Hunt is On!

By Carolyn Brinkworth

The world of astronomy was given new direction on August 13, 2010, with the publication of the Astro2010 Decadal Survey. Astro2010 is the latest in a series of surveys produced every 10 years by the National Research Council (NRC) of the National Academy of Sciences. This council is a team of senior astronomers who recommend priorities for the most important topics and missions for the next decade.

Up near the top of their list this decade is the search for Earth-like planets around other stars—called "extrasolar planets" or "exoplanets" —which has become one of the hottest topics in astronomy.

The first planet to be found orbiting a star like our Sun was discovered in 1995. The planet, called "51 Peg b," is a "Hot Jupiter." It is about 160 times the mass of Earth and orbits so close to its parent star that its gaseous "surface" is seared by its blazing sun. With no solid surface, and temperatures of about 1000 degrees Celsius (1700 Fahrenheit), there was no chance of finding life on this distant world. Since that discovery, astronomers have been on the hunt for smaller and more Earth-like planets, and today we know of around 470 extrasolar planets, ranging from about 4 times to 8000 times the mass of Earth.


This explosion in extrasolar planet discoveries is only set to get bigger, with a NASA mission called Kepler that was launched last year. After staring at a single small patch of sky for 43 days, Kepler has detected the definite signatures of seven new exoplanets, plus 706 "planetary candidates" that are unconfirmed and in need of further investigation. Kepler is likely to revolutionize our understanding of Earth's place in the Universe.

We don't yet have the technology to search for life on exoplanets. However, the infrared Spitzer Space Telescope has detected molecules that are the basic building blocks of life in two exoplanet atmospheres. Most extrasolar planets appear unsuitable for supporting life, but at least two lie within the "habitable zone" of their stars, where conditions are theoretically right for life to gain a foothold.

We are still a long way from detecting life on other worlds, but in the last 20 years, the number of known planets in our Universe has gone from the 8 in our own Solar System to almost 500. It's clear to everyone, including the Astro2010 decadal survey team, that the hunt for exoplanets is only just beginning, and the search for life is finally underway in earnest.

Explore Spitzer's latest findings at http://www.spitzer.caltech.edu. Kids can dream about finding other Earths as they read "Lucy's Planet Hunt" at http://spaceplace.nasa.gov/en/kids/storybooks/#lucy.

This article was provided by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Caption:

Artist's rendering of hot gas planet HD209458b. Both the Hubble and Spitzer Space Telescopes have detected carbon dioxide, methane, and water vapor—in other words, the basic chemistry for life—in the atmosphere of this planet, although since it is a hot ball of gas, it would be unlikely to harbor life.

Editors:

You can download this image from http://spaceplace.nasa.gov/news_images/alien-atmosphere.jpg.