Blue Rings around Red Galaxies

by Trudy E. Bell and Dr. Tony Phillips

Beautiful flat rings around the planet Saturn are one thing-but flat rings around entire galaxies?

That is the astonishing discovery that two astronomers, Samir Salim of Indiana University at Bloomington and R. Michael Rich of UCLA described in the May 10, 2010, issue of *The Astrophysical Journal Letters*.

"For most of the twentieth century, astronomers observing at visible wavelengths saw that galaxies looked either 'red and dead' or 'blue and new," explained Salim. Reddish galaxies were featureless, shaped mostly like balls or lentils; bluish ones were magnificent spirals or irregular galaxies.

Elliptical galaxies looked red, astronomers reasoned, because they had mostly old red giant stars near the end of their life cycles, and little gas from which new stars could form. Spiral and irregular galaxies looked blue, however, because they were rich in gas and dust that were active nurseries birthing hot, massive, bluish stars.

At least, that's how galaxies appear in visible light.

As early as the 1970s, though, the first space-borne telescopes sensitive to ultraviolet radiation (UV) revealed something mysterious: a few red elliptical galaxies emitted "a surprising ultraviolet excess," said Rich. The observations suggested that some old red galaxies might not be as "dead" as previously supposed.

To investigate, Salim and Rich used NASA's Galaxy Evolution Explorer satellite to identify 30 red elliptical galaxies that also emitted the strongest UV. Then they captured a long, detailed picture of each galaxy using the Hubble Space Telescope.

"Hubble revealed the answer," says Salim. The UV radiation was emitted by enormous, flat bluish rings that completely surrounded each reddish galaxy, reminiscent of the rings of Saturn. In some cases, the bluish rings even showed a faint spiral structure!

Because the bluish UV rings looked like star-forming spiral arms and lay mostly beyond the red stars at the centers of the elliptical galaxies "we concluded that the bluish rings must be made of hot *young* stars," Salim continued. "But if new stars are still being formed, that means the red-and-dead galaxies must have acquired some new gas to make them."

How does a galaxy "acquire some gas?" Salim speculates that it was an act of theft. Sometimes galaxies have close encounters. If a gas-rich irregular galaxy passed close to a gas-poor elliptical galaxy, the gravity of the elliptical galaxy could steal some gas.

Further studies by Galaxy Evolution Explorer, Hubble and other telescopes are expected to reveal more about the process. One thing is certain, says Rich: "The evolution of galaxies is even more surprising and beautiful than we imagined."

The press release is available at <u>http://www.galex.caltech.edu/newsroom/glx2010-03f.html</u>. The full published article is "Star Formation Signatures in Optically Quiescent Early-Type Galaxies" by Samir Salim and R. Michael Rich, *The Astrophysical Journal Letters* 714: L290–L294, 2010 May 10.

Point the kids to the Photon Pile-up Game at <u>http://spaceplace.nasa.gov/en/kids/galex/photon</u>, where they can have fun learning about the particle nature of light.

This article was provided by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Caption:

The Galaxy Evolution Explorer UV space telescope helped to identify red elliptical galaxies that also emitted the strongest UV. These are detailed, long-exposure Hubble Space Telescope images of four of these galaxies that capture the UV-emitting rings and arcs indicative of new star formation.

Editors:

You may download this image at <u>http://spaceplace.nasa.gov/news_images/blue-rings.jpg</u>.